Development of spontaneous recurrent seizures after kainate-induced status epilepticus.
نویسندگان
چکیده
Acquired epilepsy (i.e., after an insult to the brain) is often considered to be a progressive disorder, and the nature of this hypothetical progression remains controversial. Antiepileptic drug treatment necessarily confounds analyses of progressive changes in human patients with acquired epilepsy. Here, we describe experiments testing the hypothesis that development of acquired epilepsy begins as a continuous process of increased seizure frequency (i.e., proportional to probability of a spontaneous seizure) that ultimately plateaus. Using nearly continuous surface cortical and bilateral hippocampal recordings with radiotelemetry and semiautomated seizure detection, the frequency of electrographically recorded seizures (both convulsive and nonconvulsive) was analyzed quantitatively for approximately 100 d after kainate-induced status epilepticus in adult rats. The frequency of spontaneous recurrent seizures was not a step function of time (as implied by the "latent period"); rather, seizure frequency increased as a sigmoid function of time. The distribution of interseizure intervals was nonrandom, suggesting that seizure clusters (i.e., short interseizure intervals) obscured the early stages of progression, and may have contributed to the increase in seizure frequency. These data suggest that (1) the latent period is the first of many long interseizure intervals and a poor measure of the time frame of epileptogenesis, (2) epileptogenesis is a continuous process that extends much beyond the first spontaneous recurrent seizure, (3) uneven seizure clustering contributes to the variability in occurrence of epileptic seizures, and (4) the window for antiepileptogenic therapies aimed at suppressing acquired epilepsy probably extends well past the first clinical seizure.
منابع مشابه
The protective effect of carvacrol on kainic acid-induced model of temporal lobe epilepsy in male rat
Background and Objective: Temporal lobe epilepsy (TLE) is a chronic neurological disorder with spontaneous recurrent seizures and abnormal intracranial waves. Since the role of oxidative stress in the occurrence of epilepsy is inevitable, it seems that the use of antioxidants can prevent some of the complications resulting from this disease. This study was designed to assess the protective effe...
متن کاملThe Anticonvulsant and Antioxidant Effects of Berberine in Kainate-induced Temporal Lobe Epilepsy in Rats
Introduction: Temporal lobe epilepsy(TLE) is a long lasting neurological disorder in which patients suffer from spontaneous seizures. New treatments with novel mechanisms of action are needed to help those patients whose seizures are resistant to available drugs. In this study, we investigated the possible neuroprotective effect of berberine in an intrahippocampal kainate model of TLE in rat. M...
متن کاملIncreased excitatory synaptic activity and local connectivity of hippocampal CA1 pyramidal cells in rats with kainate-induced epilepsy.
Formation of local excitatory circuits may contribute to epileptogenesis. We tested the hypothesis that epileptogenesis is associated with increased recurrent excitation in the hippocampal CA1 area of rats with kainate-induced epilepsy. Whole cell recordings were obtained during focal flash photolysis of caged glutamate, which served as a focal excitant to activate local pyramidal cells and to ...
متن کاملDipeptidyl peptidase-4 inhibitor ameliorates status epilepticus seizures and cognitive disturbances in a rat model of temporal lobe epilepsy
Background and Objective: In temporal lobe epilepsy (TLE), recurrent seizures accompany with cognitive deficit. In some patients, the current medications cannot provide satisfactory control of seizures, therefore new drugs that act through different mechanisms are required. In the present study, the useful effect of dipeptidyl peptidase-4 inhibitor was evaluated in experimental model of tempora...
متن کاملDatasets on epilepsy:
Title Genechip # Type of data (time series etc) 1. Succinate semialdehyde dehydrogenase deficiency effect on the brain Affymetrix GeneChip Murine Genome U74 Version 2 Set MG-U74A 18 Analysis of brain hippocampi, cerebella, and cortices of succinate semialdehyde dehydrogenase (SSADH)-deficient mutants at 3 weeks of age, when fatal seizures occur. Results indicate that SSADH deficiency results in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 7 شماره
صفحات -
تاریخ انتشار 2009